Exercise 14

Let $F(s)$ be the function in Exercise 13, and write the nonzero coefficient b_{m} there in exponential form as $b_{m}=r_{m} \exp \left(i \theta_{m}\right)$. Then use the main result in part (b) of Exercise 13 to show that when t is real, the sum of the residues of $e^{s t} F(s)$ at $s_{0}=\alpha+i \beta(\beta \neq 0)$ and $\overline{s_{0}}$ contains a term of the type

$$
\frac{2 r_{m}}{(m-1)!} t^{m-1} e^{\alpha t} \cos \left(\beta t+\theta_{m}\right)
$$

Note that if $\alpha>0$, the product $t^{m-1} e^{\alpha t}$ here tends to ∞ as t tends to ∞. When the inverse Laplace transform $f(t)$ is found by summing the residues of $e^{s t} F(s)$, the term displayed just above is, therefore, an unstable component of $f(t)$ if $\alpha>0$; and it is said to be of resonance type. If $m \geq 2$ and $\alpha=0$, the term is also of resonance type.

Solution

Let $F(s)$ be the function in Exercise 13.

$$
F(s)=\sum_{n=0}^{\infty} a_{n}\left(s-s_{0}\right)^{n}+\frac{b_{1}}{s-s_{0}}+\frac{b_{2}}{\left(s-s_{0}\right)^{2}}+\cdots+\frac{b_{m}}{\left(s-s_{0}\right)^{m}} \quad\left(b_{m} \neq 0\right)
$$

Write the nonzero coefficient b_{m} there in exponential form as $b_{m}=r_{m} \exp \left(i \theta_{m}\right)$.

$$
F(s)=\sum_{n=0}^{\infty} a_{n}\left(s-s_{0}\right)^{n}+\frac{b_{1}}{s-s_{0}}+\frac{b_{2}}{\left(s-s_{0}\right)^{2}}+\cdots+\frac{r_{m} \exp \left(i \theta_{m}\right)}{\left(s-s_{0}\right)^{m}}
$$

When t is real the sum of the residues of $e^{s t} F(s)$ at s_{0} and $\overline{s_{0}}$ is, according to part (b) of Exercise 13 ,

$$
\underset{s=s_{0}}{\operatorname{Res}}\left[e^{s t} F(s)\right]+\underset{s=\bar{s}_{0}}{\operatorname{Res}}\left[e^{s t} F(s)\right]=2 e^{\alpha t} \operatorname{Re}\left\{e^{i \beta t}\left[b_{1}+\frac{b_{2}}{1!} t+\cdots+\frac{r_{m} \exp \left(i \theta_{m}\right)}{(m-1)!} t^{m-1}\right]\right\} .
$$

Distribute $e^{i \beta t}$.

$$
=2 e^{\alpha t} \operatorname{Re}\left[b_{1} e^{i \beta t}+\frac{b_{2}}{1!} t e^{i \beta t}+\cdots+\frac{r_{m} e^{i \beta t} \exp \left(i \theta_{m}\right)}{(m-1)!} t^{m-1}\right]
$$

Combine the exponential functions.

$$
=2 e^{\alpha t} \operatorname{Re}\left[b_{1} e^{i \beta t}+\frac{b_{2}}{1!} t e^{i \beta t}+\cdots+\frac{r_{m} e^{i\left(\beta t+\theta_{m}\right)}}{(m-1)!} t^{m-1}\right]
$$

Split up the real part and distribute $2 e^{\alpha t}$.

$$
=2 e^{\alpha t} \operatorname{Re}\left[b_{1} e^{i \beta t}\right]+\cdots+2 e^{\alpha t} \operatorname{Re}\left[\frac{r_{m} e^{i\left(\beta t+\theta_{m}\right)}}{(m-1)!} t^{m-1}\right]
$$

Focus now on the last term and use Euler's formula.

$$
2 e^{\alpha t} \operatorname{Re}\left[\frac{r_{m} e^{i\left(\beta t+\theta_{m}\right)}}{(m-1)!} t^{m-1}\right]=2 e^{\alpha t} \operatorname{Re}\left\{\frac{r_{m}}{(m-1)!} t^{m-1}\left[\cos \left(\beta t+\theta_{m}\right)+i \sin \left(\beta t+\theta_{m}\right)\right]\right\}
$$

Expand the term in curly braces.

$$
=2 e^{\alpha t} \operatorname{Re}\left[\frac{r_{m}}{(m-1)!} t^{m-1} \cos \left(\beta t+\theta_{m}\right)+i \frac{r_{m}}{(m-1)!} t^{m-1} \sin \left(\beta t+\theta_{m}\right)\right]
$$

Take the real part.

$$
=2 e^{\alpha t} \frac{r_{m}}{(m-1)!} t^{m-1} \cos \left(\beta t+\theta_{m}\right)
$$

Therefore, when t is real, the sum of the residues of $e^{s t} F(s)$ at s_{0} and $\overline{s_{0}}$ contains a term of the type

$$
\frac{2 r_{m}}{(m-1)!} t^{m-1} e^{\alpha t} \cos \left(\beta t+\theta_{m}\right) .
$$

